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Abstract

The use of intelligent systems in medical research and practice has a long his-
tory, becoming an essential support tool nowadays. In this paper, we investigated
and presented an overview of the Probabilistic Graphical Models, as well as some
applications of them in medical research. We explored these approaches because they
are widely used for inference in environments of uncertainty, especially for inter-causal
reasoning. Such techniques are established as safe and complete inference mechanisms,
which motivated our explanation and analysis. The methods investigated are promising
for health research. They can be applied to different types of inference problems,
especially causal inference, which is very common in the case of diseases, syndromes,
and disorders.

Keywords: Artificial intelligence, probabilistic graphical models, health diagnosis, medical re-
search.

1. Introduction
Science and technology are omnipresent in our everyday lives, becoming the new

basis for belief and bringing new ways to improve our quality of life (FEENBERG, 2006).
Artificial Intelligence (AI) is the study of intelligent behaviors. Its primary goal is a theory
of intelligence that explains the behavior of natural intelligent entities and guides the
creation of artificial agents capable of intelligent behaviors, such as prediction problems
and decision support (RUSSELL; NORVIG, 2020).

Prediction problems usually involve reasoning with uncertainty. Reasoning under
uncertainty has a long history and is a significant issue in AI. Many problems require so-
lutions for a better decision-making process. Such solutions may seek the application of
probabilistic methods to construct inference models (GENESERETH; NILSSON, 2012).
However, most real-world events are unpredictable, demanding that intelligent applica-
tions need to handle partial observability, non-determinism, or any eventuality (RUS-
SELL; NORVIG, 2020). The uncertainty arises from some information deficiency. Thus,
the information may be incomplete, imprecise, incorrect, or contradictory (KLIR, 2006).

Probabilistic methods may involve, for example, Probabilistic Graphical Models
(PGMs) such as Bayesian Networks (BNs) and Hidden Markov Models (HMMs), which
are among the best methods for reasoning about uncertainty (NEIL; FENTON; NIEL-
SON, 2000). These probabilistic networks allow inter-causal reasoning, a vital aspect
that distinguishes them from other inference systems (KJAERULFF; MADSEN, 2013).
In inter-causal reasoning, taking evidence about a hypothesis decreases the belief in the
competing unobserved hypotheses automatically (KJAERULFF; MADSEN, 2013), es-
tablishing a safe and complete inference mechanism (PEARL, 1988).

BNs are graphical representations of causal relationships in a particular domain
(HOLMES; JAIN, 2008). A BN is a directed and acyclic graph in which each node cor-
responds to a random variable. Directed edges connect pairs of nodes, indicating a direct
influence of one node over the other. In addition, each node has a conditional probability
table that quantifies the effect of its parent nodes over it. By using inference algorithms
over BNs, it is possible to estimate beliefs in the context of observed pieces of evidence
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(RUSSELL; NORVIG, 2020). Employing rigorous formalism and practical algorithms
for probabilistic reasoning, BNs support any reasoning with causal variables, such as di-
agnosis, prediction, or causal explanation (RUSSELL; NORVIG, 2020; WILLIAMSON,
2002).

HMMs are a double stochastic process, with a non-visible stochastic process (not
observable) that can be observed/predicted through another stochastic process that pro-
duces the sequence of observations. The hidden processes are a set of states connected
by transitions with probabilities. In contrast, the observable (non-hidden) processes are
outputs or observable states, each one emitted by each not observable state according to
some output of a probability density function. HMMs allow the designing of systems
to predict a sequence of related states through a sequence of observations (RABINER,
1989).

Also used for modeling several different problems in medical researches
(KROGH; MIAN; HAUSSLER, 1994; MEYER; DURBIN, 2002; TESTA et al., 2015),
HMMs have been applied in several different areas of AI, such as Computer Vision
(GHAHRAMANI, 2001), Robotics (BERG et al., 2018), Speech and Face Recognition
(MUSTAFA; ALLEN; APPIAH, 2019; RAHUL et al., 2019), and Computational Biology
(TAMPOSIS et al., 2019).

The causal nature of health diseases and the possibility of structuring probabilistic
networks as trees motivate the PGMs as a reasonable alternative for medical research.
Considering the ability of PGMs to build transparent and efficient inference models in
inter-causal domains, this work aims to explain and investigate the use of PGMs (BNs
and HMMs) in medical research.

Section 2 provides an overview of AI with emphasis on probabilistic models
applied to reasoning under environments of uncertainty. It introduces some necessary
concepts of probability theory and presents two of the main probabilistic graphical ap-
proaches, highlighting their structure, syntax, semantics, and learning and inference meth-
ods. Sections 3 and 4 present works related to AI and PGMs applied to medical research,
while Section 5 discusses and concludes this work.

2. Artificial Intelligence
AI concerns designing intelligent computer systems that exhibit characteristics

we associate with intelligence (learning, reasoning, understanding language, etc). Most
AI comprises the following sub-fields: Machine Learning, Natural Language Processing,
Computer Vision, Robotics, and Planning. These subdivisions relate more to the sub-
fields practical goals than the technologies each employs (RUSSELL; NORVIG, 2020).
For example, Artificial Neural Networks is a Machine Learning technique commonly used
in Natural Language Processing, Robotics, Computer Vision, and Planning.

2.1. AI Sub-fields
Machine Learning techniques enable machines to learn by observing data and cre-

ating models based on such information. Computers use these models as both a hypothesis
about the problem and software capable of solving them. There are three main types of
learning: 1) supervised learning, in which the computer observes pairs of input and out-
put data to learn a function that maps from inputs to outputs; 2) unsupervised learning, in
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which the computer uses the inputted data to learn patterns but does not receive explicit
feedback; and 3) reinforcement learning, in which the computer learns through a set of
reinforcements that can be rewards or punishments.

Natural Language Processing techniques enable machines to communicate suc-
cessfully in natural languages, such as English or Portuguese. However, as natural lan-
guages are different from formal languages, a common problem is the language models,
which are models to predict the probability distribution of the language expressions.

Intelligent agents can use several sensors to sense the environment (e.g., images,
noises, distances, positions, temperatures). Through this perceptual channel, machines re-
ceive stimulus and create a representation of the real world. Computer Vision techniques
enable machines to perceive objects from the environment through the use of sensors like
cameras. Based on external information acquired by sensors (such as images), Computer
Vision agents can build a real-world model, known as reconstruction (e.g., creating ge-
ometries), or describe distinctions among the objects they “see” (e.g., labeling objects),
known as recognition.

Robotics are techniques that enable machines to move and manipulate the physical
world. Such machines (robots) usually are equipped with actuators (e.g., arms, grippers,
legs, wheels) designed to produce physical forces on the environment and sensors (e.g.,
gyroscopes, accelerometers, GPS, cameras, radars, lasers) dedicated to perceiving the
environment. This robot-environment interaction can change the state of the robot, the
state of the environment, and the state of the people around it.

Planning techniques allow finding a sequence of actions to achieve a goal. Given
an initial state, a goal (or a set of them), and a set of possible actions, the planning problem
synthesizes a sequence of steps to be executed in the initial state to turn the environment
into a goal state. Planning has applications in several areas such as Games, Logistics,
Robotics, Manufacturing, etc.

In general, real-world applications still require other abilities from so-called in-
telligent agents, such as automated reasoning and knowledge representation. Automated
reasoning refers to performing reasoning sequences electronically and automatically find-
ing suitable reasoning steps to infer new knowledge from a given data, answer questions,
and outline new conclusions. Knowledge representation refers to how to represent real-
world events (what machines know, hear, or see) in a pattern that machines can use to
reason and solve problems (RUSSELL; NORVIG, 2020).

2.2. Probabilistic Graphical Models

Any technique that allows the computer to imitate human behaviors is popularly
classified as AI. However, we also have AI techniques based on other biological systems,
probability, statistics, and mathematics. Emerging in the 1950s, AI is a relatively new
science and engineering field that uses many spheres of human knowledge, such as logic,
probability, and mathematics. Its primary goal is a theory of intelligence that explains the
behavior of natural intelligent entities and guides the creation of artificial agents capable
of smart behaviors. An intelligent agent must be capable of precisely perceive the envi-
ronment and perform proper actions. An agent is rational if it does the right thing, given
its acquired knowledge (RUSSELL; NORVIG, 2020; GENESERETH; NILSSON, 2012).
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In the AI context, we can define intelligence as human or rational. Human in-
telligence is committed to human performance, while rational is a formal and ideal per-
formance measure called rationality. Different techniques are used to pursue these di-
mensions. Human intelligence approaches usually use empirical science related to psy-
chology, cognitive science, biology, and neuroscience. These approaches involve obser-
vations, hypotheses, and the study of how humans behave, how our minds operate, and
how human brains process information. Rationalist approaches consist of a combination
of formalism from logic, mathematics, statistics, and control theory. These methods aim
to create more strict rules for the decision process (RUSSELL; NORVIG, 2020).

2.3. Probabilistic Networks

Most real-world events are unpredictable, demanding that intelligent applications
handle the uncertainty from partial observability, nondeterminism, or any eventuality
(RUSSELL; NORVIG, 2020). The uncertainty arises from some information deficiency.
So the information may be incomplete, imprecise, incorrect, or contradictory (KLIR,
2006).

Deductive Logic is insufficient for reasoning under uncertain environments once
it does not attribute a degree of uncertainty to the premises nor conclusions. Then, the
Inductive Logic, supported by the Probability Theory, has emerged as a proper alternative
for expressing reasoning (WILLIAMSON, 2002), once the nature of the knowledge from
which inferences are produced is uncertain and subjective (PEARL, 1986).

The probability theory provides ways to deal with the uncertainty coming from
laziness and ignorance. Laziness is due to the extensive work to consider every pos-
sible explanation for given evidence. Ignorance is due to a non-complete knowledge
about the domain or uncertainty about a particular situation once we can not evaluate
all premises. Address uncertainty with numeric degrees of belief solves the qualifica-
tion problem, which specifies the impossibility of identifying all preconditions needed to
succeed in the desired action (RUSSELL; NORVIG, 2020).

Then emerged the PGMs, a graph-based representation for compactly encoding a
complex distribution over a high dimensional space. Nodes express variables, and edges
denote the interactions between them. Known as probabilistic networks, these models
allow inter-causal reasoning, a vital aspect that distinguishes them from other automated
inference systems (KOLLER; FRIEDMAN, 2009; KJAERULFF; MADSEN, 2013). In
the inter-causal reasoning process, taking evidence about a hypothesis decreases the belief
in the competing unobserved hypotheses automatically (KJAERULFF; MADSEN, 2013),
which constitutes a safe and complete inference mechanism (PEARL, 1988).

There are two graphical families to represent probability distributions. The
Bayesian Networks (BNs) (Section 2.6), and the Markov Models (MMs) (Section 2.7).
Both models provide the duality of independencies and factorization. However, they
differ regarding the set of independencies they can encode and the factorization of the
distribution they induce (KOLLER; FRIEDMAN, 2009).

2.4. Basic Probability Theory

Before introducing the graphical models, this subsection aims to introduce some
fundamental probability theories suited to the requirements of the probabilistic networks.

5
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A sample space is the set of all possible worlds in a specified domain. The pos-
sible worlds are mutually exclusive, once two or more possible worlds can not be the
case simultaneously. The possible worlds are also exhaustive because one possible world
must be the case. For example, the throw of two distinguishable dices has 36 possi-
ble worlds {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), · · · , (6, 6)}. A fully specified
sample space associates a probability P (with values between 0 and 1) to each possi-
ble world and the total probability of all possible worlds must add up to 1. These as-
sociations are called probability distribution (RUSSELL; NORVIG, 2020; KOLLER;
FRIEDMAN, 2009).

Probability theory names its variables with the first letter in uppercase, and such
variables are called aleatory or random variables. An aleatory variable is a numerical
function defined in a sample space, and it maps from all possible worlds to a set of possible
values it can assume. It gives a numerical value X to a phenomenon within the sample
space S and is associated with a probability distribution (P (X) in S) such that: Equation
1 (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009):

∀x P (X=x) ≥ 0 and
∑
x

P (X=x) = 1 (1)

We can take the sum value obtained from two dices throw as an aleatory variable.
Function 2 is the numerical function (x and y are the values obtained from each dice), and
Table 1 is the probability distribution for each possible sum.

F (x, y) = X = x+ y (2)

Table 1. Probability distribution of Function 2

X P(X) X P(X)

2 1
36

8 1
7.2

3 1
18

9 1
9

4 1
12

10 1
12

5 1
9

11 1
18

6 1
7.2

12 1
36

7 1
6

A variable can be discrete or continuous. Discrete random variables have a fi-
nite set of possible values, usually obtained by counting. Continuous random vari-
ables take any value in a given interval of real numbers, usually obtained by measuring
(KJAERULFF; MADSEN, 2013). From this point on, we deal with the discrete variables
aspects once they are the type of variables this study suggests.

Dealing with probability distributions of multiple variables requires a spe-
cial notation. Suppose a domain with the aleatory variables Weather W =

6
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{sunny, rain, snow} and Traffic T = {jam, normal}, with probability distributions
P (W ) = {0.6, 0.25, 0.15} and P (T ) = {0.42, 0.58}, respectively. The probabilities of
all combinations of the values of W and T produce a matrix M3x2 called the joint prob-
ability distribution of W and T . Joint probabilities measure the likelihood of two or
more events co-occurring at the same point in time. It can be represented as the probabil-
ity of the intersection of the co-occurring events. A full joint probability distribution
determines the distribution for all aleatory variables completely. This full joint distribu-
tion is sufficient as a knowledge base to calculate the probability of any possible event in
the model (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009). Table 2 shows
the joint probability distribution of W and T .

Table 2. Full joint probability distribution of W and T

W
T

jam normal

sunny 0.10 0.50

rain 0.20 0.05

snow 0.12 0.03

A particular subset of possible worlds is called events. An example of an event is
the list of worlds where two rolled dice add up to 3 {(1, 2), (2, 1)}. Probabilistic assertions
and queries are usually about pre-defined events. The sum of the probabilities associated
with each world of an event defines the event probability. For example, the probability
that two rolled dice add up to 3 is P (Sum=3) = P ((1, 2))+P ((2, 1)) = 1/36+ 1/36 =
1/18 (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009). Equation 3 shows the
probability for any event E.

P (E) =
∑
w∈E

P (w) (3)

We could calculate the probabilities of some events in Table 2. To do so, we
must apply Equation 3 to add up the probability values where the desired event is true.
For example, the probability of rain (P (W=rain) = 0.20 + 0.05 = 0.25), and the
probability of snow and traffic jam (P (W=snow, T=jam) = 0.12).

Probabilities like P (W=rain) are called unconditional or prior probabilities
once probability theory does not require comprehensive knowledge of the sample space.
Prior probabilities refer to the belief in the events in the absence of any other information
(RUSSELL; NORVIG, 2020).

Most of the time, it is necessary to know the probability of an event given that
we have some information already revealed, usually called evidence. This probability
is called conditional or posterior probability and is written as P (X|Y ) (RUSSELL;
NORVIG, 2020). Equation 4 shows how to compute the conditional probability of event
X given an event Y .

7
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P (X|Y ) =
P (X,Y )

P (Y )
(4)

For example, the probability of a traffic jam given that it is raining is:

P (T=jam|W=rain) =
P (T=jam,W=rain)

P (W=rain)

P (T=jam|W=rain) = 0.2/0.25 = 0.8

(5)

Given a conditional probability, the joint distribution of X and Y can be written
following the product rule (RUSSELL; NORVIG, 2020), as in Equation 6.

P (X,Y ) = P (X|Y ) P (Y ) (6)

We can apply the product rule to compute the joint probability of n variables by
a successive product of conditional and joint probabilities of these same variables. Each
subsequent product reduces the joint probability to a conditional probability and a shorter
joint probability. Equation 7 presents the chain rule.

P (X1, · · ·, Xn) = P (X1|X2, · · ·, Xn) P (X2, · · ·, Xn)

= P (X1|X2, · · ·, Xn) P (X2|X3, · · ·, Xn)

P (X3, · · ·, Xn) · · ·
= P (X1|X2, · · ·, Xn) P (X2|X3, · · ·, Xn) P (X3, · · ·
· · ·, Xn)· · ·P (Xn−1|Xn) P (Xn)

=

[
n−1∏
i=1

P (Xi|Xi+1, · · ·, Xn)

]
P (Xn)

(7)

Given observed evidence, to compute the posterior probability for query propo-
sitions is known as probabilistic inference. We can use the full joint distribution to
perform inference. Given the full joint distribution of a model, Equation 8 can be used to
answer queries.

P (X|E=e) = αP (X,E=e) = α
∑
y

P (X,E=e, Y=y) (8)

Where:

• P (X|E=e) is what we want to know (query);
• e is the list of observed values;
• y is all possible combinations of the values of the remaining unobserved variables;
• α is a normalization constant.

X , E, and Y are the entire domain set of aleatory variables. P (X|E=e, Y=y) is a
subset of the full joint distribution probabilities. The full joint distribution in tabular form
does not scale well. However, it is the theoretical foundation to build effective reasoning
systems (RUSSELL; NORVIG, 2020).

There is a fundamental property between events known as independence (also
known as marginal independence or absolute independence). If an event X does not in-
fluence an event Y and vice-versa, they are independent events (XY ). This independence
means that the occurrence of X does not affect the probability of occurrence of Y and

8
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vice-versa. The independence between two events (X and Y ) can be written as in Equa-
tion 9.

P (X,Y ) = P (X) P (Y ) or

P (X|Y ) = P (X) or

P (Y |X) = P (Y )

(9)

The knowledge of the domain supports performing assertions over independent
events. Suppose we can split the aleatory variables into independent subsets. In that case,
we can factor the full joint distribution into separate joint distributions, which reduces the
size of the domain representation and the complexity of the inference model. However, it
is difficult to identify independent variables in complex domains once independence will
fail if a connection, even indirect, exists between two variables (RUSSELL; NORVIG,
2020).

Although independence is a valuable property, it is difficult to identify fully inde-
pendent events in real-world domains. It is most common to determine the independence
of two events, given a third event. Known as conditional independence, this relation-
ship of three variables defines the independence of two variables X and Y , given a third
variable Z (XY |Z), as in Equation 10.

P (X,Y |Z) = P (X|Z) P (Y |Z) or

P (X|Y, Z) = P (X|Z) or

P (Y |X,Z) = P (Y |Z)

(10)

As for absolute independence, conditional independence assertions also allow the
decomposition of the full joint distribution. Once conditional independence is more com-
monly available, it can enable probabilistic systems to scale up. This decomposition of
large probabilistic domains into weakly connected subsets makes conditional indepen-
dence one of the most basic and robust structures of knowledge representation in uncer-
tainty environments (KOLLER; FRIEDMAN, 2009; RUSSELL; NORVIG, 2020).

2.5. Variables Identification

The aleatory variables constitute the entire model basis. Selecting variables is one
of the most pervasive selection problems in statistical applications. The problem is the un-
certainty about which set of variables should establish the relationship between a variable
of interest and a subset of potential explanatory or predictor variables (GEORGE, 2000).
Domain experts are usually those who perform the selection of the aleatory variables.

There are some fundamental approaches to address this problem, such as the clar-
ity test proposed by Kjaerulff e Madsen (2013). According to the clarity test, a variable
A must meet three principles to probe whether it has been clearly defined:

• All possible values in the A domain must be exhaustive and mutually exclusive.
If the possible values of A are not mutually exclusive, they should be split into
several variables;

• Usually, A should represent a unique set of events with no competing variables.
That is, the state of A should not be given deterministically by the state of another
variable;

• A must be clearly defined, leaving no ambiguity concerning its semantics.

9
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Kjaerulff e Madsen (2013) also recommends that it is essential to understand the
types of variables that may arise. The identification and classification of the variables
make it easier to connect them.

• Problem or hypothesis variables are the variables of interest from which we
may want to calculate the posterior probability given some evidence (informa-
tion variables). Usually non-observable, these variables relate to the diagnoses or
predictions to be made;

• Information variables are usually the observable variables that usually have rele-
vant information to the problem-solving. The author separates these variables into
the background and symptom variables:

– Background variables usually are among the network root variables and
represent the information available before a problem occurs, holding a
causal influence over both the problem variables and the symptom vari-
ables;

– Symptom variables are the consequence variables usually available after
the occurrence of a problem. These variables are children of the problem
variables or background variables.

• Mediating variables are usually non-observable. Their posterior probability is
not of immediate interest, but they help maintain the essential network indepen-
dence relationships. They tend to be parents of symptom variables and children of
problem variables and background variables.

2.6. Bayesian Networks

Bayesian Networks (also known as Causal Networks, Belief Networks, Causal
Probabilistic Networks, Probabilistic Cause-Effect Models, Probabilistic Influence Dia-
grams, and Graphical Probability Networks) are graphical models of causal relationships
in a given domain. Describing dependencies among variables, BNs enable solving logical
problems that involve probabilistic concepts, expanding the initial models of knowledge
representation and manipulation (HOLMES; JAIN, 2008; NEIL; FENTON; NIELSON,
2000).

Essentially, BNs can represent, concisely, any full joint probability distribution.
By employing a rigorous and efficient formalism to uncertain knowledge structuring
as well as practical algorithms for probabilistic reasoning, BNs support any reasoning
with causal variables, such as diagnosis, prediction, or causal explanation (RUSSELL;
NORVIG, 2020; WILLIAMSON, 2002).

BNs are models for knowledge representation consisting of two components: a
qualitative component, representing the network structure as a Directed Acyclic Graph
(DAG), and a quantitative component, representing the probabilistic element as a set of
conditional probabilities. Both components are fundamental to the definition, construc-
tion, and underlying inference process (KJAERULFF; MADSEN, 2013; DARWICHE,
2008).

Figure 1 shows the structure and the Conditional Probability Tables (CPTs) of a
BN representing part of the stock exchange domain. The IR variable represents the coun-
try’s interest rate. The interest rate directly impacts the stock market (SM) performance.
The stock market performance usually indicates how the country’s gross domestic product

10
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(GDP ) will perform. In addition to internal factors, the state of the stock market (SM)
and the performance of the company’s economic sector (CS) also impact the stock price
(SP ) of a particular company.

SM

SP

CS

IR

GDP

CS P(CS)

good 0.4

bad 0.6

IR P(IR)

high 0.7

low 0.3SM IR P(SM|IR)

bull high 0.2

bear high 0.8

bull low 0.7

bear low 0.3

GDP SM P(GDP|SM)

up bull 0.7

down bull 0.3

up bear 0.2

down bear 0.8

SP SM CS P(SP|SM,CS)

high bull good 0.8

low bull good 0.2

high bull bad 0.6

low bull bad 0.4

high bear good 0.5

low bear good 0.5

high bear bad 0.1

low bear bad 0.9

Figure 1. A BN example over five variables. A CPT is associated with each node
containing the conditional probabilities of that node given its parents.

2.6.1. Syntax of Bayesian Networks

BNs represent its qualitative aspect using graphs that illustrate their probabilistic
distributions. A graph G = (V,E) consists of a finite set of distinct vertices (or nodes)
V = {v1, v2, ..., vN}, and a finite set of edges (or links) A = {a1, a2, ..., aN2} connecting
its vertices (ROSEN, 2017).

The connection pattern between nodes delimits some properties of a graph. The
notation v1 → v2 indicates a connection from vertice v1 to vertice v2 by a directed edge,
which means a directed graph (or digraph). The notation v1 — v2 designates a con-
nection from v1 to v2 by a not directed edge, which means an undirected graph. In a
digraph, the edges are unidirectional, indicating that the graph can be traversed only in
such directions. On the other hand, in an undirected graph, the edges are bidirectional,
indicating that the graph can be traversed in either direction (RUSSELL; NORVIG, 2020;
ROSEN, 2017).

A graph is connected if there is a path between every pair of its vertices. A di-
rected graph is acyclic if any path following the directions of the edges will never produce
a closed-loop (cycles). In a directed multiply connected graph, there is more than one
distinct path between two nodes. There is at most one path between any two nodes in
a directed singly connected graph (trees). In simple trees, each node has at most one
parent. In polytrees, nodes can have more than one parent (RUSSELL; NORVIG, 2020;
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ROSEN, 2017). Figure 2 illustrates these types of graphs.

Graph

Directed

Undirected

Connected

Acyclic

Cyclic

v4 v5

v2 v3

v1

Singly Connected

Multiply Connected

v4 v5

v2 v3

v1

Simple Trees

Polytrees

v4 v5

v2 v3

v1

v4 v5

v2 v3

v1

Disconnected

v4 v5

v2 v3

v1
v4 v5

v2 v3

v1

Directed Acyclic Graphs (DAGs)

Figure 2. Types of graphs

Directed Acyclic Graphs (DAGs) represent the qualitative aspect of the BNs
graphically. Concerning the DAG that represents a BN, vertices represent the aleatory
variables, which correspond to the knowledge domain concepts. The directed edges of a
DAG represent, in most cases, a dependency relation between the vertices they connect.
Thus, the relation v1 → v2 represents a direct dependence of variable v2 with regard to
variable v1, meaning typically that v1 has a direct influence on v2.

Some authors point out that the dependency relation is not necessarily a cause-
effect relationship and could be just some type of association (SCUTARI; DENIS, 2014).
Other authors argue the causal relationship, assuming that the dependency relation is a
cause-effect relationship (KJAERULFF; MADSEN, 2013). Based on probabilistic prop-
erties, other authors argue in favor of both points of view. They argue that the direction of
the edges does not need to have a specific meaning. Although they agree that meaningful
BNs express cause-effect relationships, once they correspond to more sparse and natu-
ral graphs, resulting in a more transparent and significant interpretation (PEARL, 2009;
KOLLER; FRIEDMAN, 2009). Bayesian models in which the directed edges represent a
causal effect are called causal models.

2.6.2. Dependencies and Independencies in Graphs

Dependencies and independencies are crucial for understanding BNs behavior and
answering queries once the inference model estimates the probability of unobserved vari-
ables through other variables whose state has been observed (NIELSEN; JENSEN, 2009).

There is a direct dependency between X and Y if a directed edge exists between
X and Y . Thus, X and Y are correlated regardless of evidence about any other variable.

12



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

Given two not directly linked variables, X and Y , a third variable, Z, in the middle of
the undirected path determines conditional independence between X and Y . A vertice
Z connecting X and Y specifies an indirect dependency between X and Y (NIELSEN;
JENSEN, 2009).

The topology of a BN encodes mainly the conditional independence of the model.
Figure 3 illustrates the four cases where the vertice Z connects X and Y: a) indirect causal
effect; b) indirect evidential effect; c) common cause; and d) common effect.

X

Z

Y

Linear

Y

Z

X X

Z

Y

Diverging

X

Z

Y

Converging

(a) (b) (c) (d)

Figure 3. D-connection types between vertices/variables.

Evidence can be forwarded through the variables of linear (serial) connections
unless the state of a variable in the middle is known. In the linear connection shown in
Figure 3a, if the state of Z is known the cause X can not influence the effect Y . In the
linear connection shown in Figure 3b, if the state of Z is known the effect X can not
evidence the cause Y (or the effect X can evidence the cause Y only if Z is unknown)
(NIELSEN; JENSEN, 2009; CHARNIAK, 1991).

Evidence can pass between all children of a parent variable (vertice) Z in diverg-
ing connections unless the state of Z is known. In the diverging connection shown in
Figure 3c, evidence can pass between X and Y unless the state of Z is known (X is cor-
related with Y if and only if Z is not known) (NIELSEN; JENSEN, 2009; CHARNIAK,
1991).

It is impossible to infer anything about the parents of a variable Z in converging
connections unless something is known about Z or its descendants. In the converging
connection presented in Figure 3d, if something is known about Z or its descendants,
evidence in X can tell us something about Y and vice-versa (NIELSEN; JENSEN, 2009).

In linear and diverging connections, X and Y are independent only if the state
of Z is known. Thus X and Y are d-separated given Z (d connotes “directional”). In
converging connections, X and Y are independent and d-separated only if the state of Z
or any of its descendants are not known (NIELSEN; JENSEN, 2009; CHARNIAK, 1991).

There are still other general conditional independence properties. As shown in
Figure 4, the Markov condition states that a variable X is conditionally independent of
its non-descendants (ND1 and ND2), given its parents (P1 and P2).

13
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P1

X

P2

D2D1

ND2ND1

Figure 4. Conditional independence of non-descendants.

As shown in Figure 5, a variable X is conditionally independent of all other vari-
ables in the BN given its Markov blanket. The Markov blanket of a variable X is the
set composed of its parents, children, and children’s parents. Markov blankets follow the
d-separation property since the Markov blanket of a variable d-separates it from all other
variables.

P1

X

P2ND1 ND2

CP1 CP2

D2D1

ND3 ND4

Figure 5. Conditional independence given the Markov blanket of a variable.

Grays areas in Figure 4 and 5 represent evidence, these areas “block” probability
propagation (RUSSELL; NORVIG, 2020).

2.6.3. Semantics of Bayesian Networks

Sucintlly, BNs are DAGs in which each vertice corresponds to an aleatory vari-
able. Directed edges connecting pairs of vertices indicate a direct influence of one vertice
(parent) over another (child). The qualitative aspect of the BNs specifies the correspon-
dence between their syntax with the joint probability distribution over the BN variables.
Once the topology of a BN was specified, a conditional distribution must be computed as
the local probability for each variable given its parents. As a probabilistic model, each
vertice has a CPT that quantifies the effects of its parents on it. The topology and the
local probability define the full joint distribution for all variables of a BN (RUSSELL;
NORVIG, 2020).

As mentioned before, the full joint probability distribution of a domain will in-
crease as the number of its variables grows. However, given the topology of a BN, only
the conditional probabilities for the vertices involved in direct dependencies are required,

14
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which means the probability for every node given all possible combinations of its parents.
A complete example of a BN (topology and CPTs) can be seen in Figure 1.

The edges in a BN specify the independence assumptions that must hold between
the random variables. These assumptions determine what probability information is re-
quired to specify the probability distribution among the network’s random variables. Each
node Xi has an associated probability P (Xi|parents(Xi)) that quantifies the effect of its
parents on it (NIELSEN; JENSEN, 2009; RUSSELL; NORVIG, 2020). Therefore, the
chain rule can be reduced, as shown in Equation 11.

P (xi|xi+1, · · ·, xn) = P (xi|parents(Xi)) (11)

Suppose a BN which contains n variables {X1, · · · , Xn}. The product of the
relevant elements of the local conditional distributions represents each entry in the joint
probability distribution table, as in Equation 12. Thus, BNs allow defining the joint dis-
tribution based only on their conditional probabilities, reducing the number of probability
values needed substantially (NIELSEN; JENSEN, 2009; RUSSELL; NORVIG, 2020).

P (X1=x1, · · ·, Xn=xn) =
n∏

i=1

P (xi|parents(Xi)) (12)

Equation 13 presents the Bayes theorem, which is the probabilistic basis of the
BNs. The Bayes theorem allows computing unknown probabilities from known and stable
ones. This simple equation underlies all modern AI approaches for probabilistic inference
by helping to simplify the intermediate calculations (RUSSELL; NORVIG, 2020).

P (h|D) =
P (D|h) · P (h)

P (D)
(13)

Where:

• P (h) is the prior probability of a hypothesis h;
• P (D) is the prior probability of the observed data D;
• P (D|h) is the conditional probability of D given h; and
• P (h|D) is the posterior probability of h given D. It is the belief in the model after

seeing the data.

Given the topology and the conditional probabilities of a BN, it is possible to
infer the probability of any variable in the network applying basically the Bayes theorem
together with some new evidence. Thus, it is possible to take action or search for further
evidence to increase the network’s confidence (RUSSELL; NORVIG, 2020).

2.6.4. Learning in Bayesian networks

Learning is the task of estimate and select models. Usually, the topology and the
probabilities required to define a BN are given by specialists, preview studies, or obtained
with experiments and calculus. It is also possible to reach the topology and the statistical
information using methods that extract them from the data available (CHARNIAK, 1991;
HECKERMAN, 2008; HECKERMAN; GEIGER; CHICKERING, 1995).
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There are different learning approaches such as manual methods supported by
the experience of domain experts, known as supervised learning; (semi-)automatic meth-
ods that learn from data, known as unsupervised learning; or a combination of both ap-
proaches, which combines observed data with experts’ experience (KJAERULFF; MAD-
SEN, 2013).

The manual construction of a BN is usually a challenging task. It requires distinct
expertise such as model engineering abilities and a comprehensive understanding of the
problem domain. The model elicitation process requires: 1) a solid problem definition; 2)
a careful identification of the relevant variables; 3) a precise definition of dependences/in-
dependences relationships among the chosen variables; and 4) a proper elicitation of many
conditional and prior probabilities (KJAERULFF; MADSEN, 2013).

As the parameters of a BN are determined by its structure, creating a BN always
proceeds in three consecutive stages. The first step refers to the selection of the variables
of interest. The second step refers to identifying the causal, functional or informational
relations among the variables to construct the network structure (DAG). The last step
refers to estimating the set of conditional and prior probabilities for all network nodes.

2.6.5. Developing the BN Structure

The network structure development defines the dependency relationship between
the selected variables. There are two main creational approaches: a basic approach based
on the natural causal ordering among the previously mentioned types of variables and the
Neil method proposed by Neil, Fenton e Nielson (2000).

The basic approach maintains a causal perspective in the model construction,
once this causality is crucial to construct influence diagrams. Such a causal approach
may lead to a more suitable representation of the dependence and independence relations
and a more reliable estimate of the conditional probabilities (KJAERULFF; MADSEN,
2013).

Thus, the next step in a BN construction process involves identifying and verifying
causal links among the selected variables. According to the types of variables, Figure 6
gives an overall view of the causal dependence relations of a BN.

The Neil method creates the network structure based on five commonly occur-
ring substructures. These substructures are known as idioms, and their semantics and
syntax represent different methods of uncertain reasoning, covering the vast majority of
substructures that can occur in a BN. As described by Neil, Fenton e Nielson (2000), the
five idioms are:

• Definitional or synthesis integrates many variables into a single variable aiming
to organize the BN;

• Cause/consequence models cause-effect mechanisms;
• Measurement models the uncertainty associated with the accuracy of a measure-

ment instrument;
• Induction models inductive reasoning based on populations of similar or ex-

changeable members;
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Background Problem

Mediating

Symptom

Figure 6. Typical overall causal structure of a BN. Adapted from Kjaerulff e Mad-
sen (2013).

• Reconciliation models the reconciliation of results from competing measurement
or prediction systems.

According to the types of variables defined in Section 2.5, the variables classi-
fication depends on their position in the DAG structure. Which of the idioms to chose
depends on how we perceive the relationships among the variables. However, the cause/-
consequence idiom is the most frequently used substructure. Thus, considering that the
relations among the subset of variables are best described using one or more cause/conse-
quence relations is a good starting point (KJAERULFF; MADSEN, 2013). Neil, Fenton
e Nielson (2000) present a guide to choosing the proper idiom.

2.6.6. Inference in Bayesian Networks

BNs answer questions concerning the nature of their data through the use of partial
queries. These queries are performed through techniques known as inference, probabilis-
tic reasoning or belief updating. Given a BN B with n variables {X1, · · · , Xn}, a partial
question Q = {B,A,E} consists of computing the conditional probability P (A|E=e)
where:

• A is a target set of non-observed variables;
• The evidence E=e is a set of k observed variables E = (E1=e1, ..., Ek=ek);
• Variables in X not included in A nor E constitute the set of hidden variables H .

Evidence may combine multiple and not always perfect sources of information.
Thus, the observation can be uncertain and imprecise, which generates what is known as
uncertain evidence. Therefore, there are different types of evidence, such as hard evidence
and probabilistic evidence (virtual evidence and soft evidence) (MRAD et al., 2015).

The classic notion of evidence is hard or regular evidence that precisely specifies
the state of a random variable. It is an observation that a variable A definitely has a
particular value (e.g., A=1) (PEARL, 1988).

Virtual evidence, also known as likelihood evidence, corresponds to the cases
where the observation is uncertain. It is usually interpreted as evidence with uncertainty
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and is commonly represented as a likelihood ratio. A likelihood P (A) represents virtual
evidence of a variable A as in Equation 14 (PEARL, 1988).

P (A) = (P (a1|a1), ..., P (an|an)) (14)

Where P (ai|ai) is the probability of observe A in the state ai if it really is in the
state ai.

Soft evidence is usually interpreted as evidence of uncertainty and is represented
as a probability distribution of one or more variables. There is uncertainty concerning the
precise value of a variable A, but certainty regarding its probability distribution P (A).
Since P (A) distribution is a certain observation, updating network belief should preserve
it (VALTORTA; KIM; VOMLEL, 2002).

This preservation of the local distribution of the evidence variable is the main
difference between soft evidence and virtual evidence, once virtual evidence does not
require this preservation. Belief in virtual evidence is not fixed and can be modified by
further evidence on other variables (MRAD et al., 2015).

There are three main categories of partial queries: Conditional Probability
Query (CPQ), Maximum a Posteriori (MAP), and Most Probable Explanation (MPE) or
Marginal MAPs (SCUTARI; DENIS, 2014; KOLLER; FRIEDMAN, 2009).

Koller e Friedman (2009) classify CPQs as:

• Causal, deductive or predictive reasoning: that estimates the probability of a
variable given the observation of non-descending variables (from causes to ef-
fects). In the BN example in Figure 1, P (SP |SM,CS) represents this type of
query;

• Evidence, abductive or explanation reasoning: that estimates the probability of
a variable given the observation of descending variables (from effects to causes).
In the BN example in Figure 1, P (IR|GDP, SP ) represents this type of query;

• Inter-causal reasoning: that addresses the interaction of causing variables with
regard to the same effect variable. It refers to the decrease in the belief of compet-
ing hypotheses once observed the occurrence of one or several hypotheses. In the
BN example in Figure 1, P (CS|SM,SP ) represents this type of query.

MPAs and MPEs consist of identifying the most likely configuration for all vari-
ables in A that maximize the posterior probability of E. In MPE, A coincides with all
remaining variables in the subset {X − E}. In MAP, A is a strict subset of “hypothesis”
variables in {X − E}. Thus, MPEs and MAPs calculate the most probable assignment
for A (a∗) in a model X given evidence E=e, as in Equation 15 (DARWICHE, 2008).

(A|E=e) = a∗ = argmax
A

P (A|E) (15)

All these inference problems are complex. The decision version of MPEs, CPQs,
and MAPs are known to be NP-complete, PP-complete, and NPPP-complete1, respec-
tively. There are exact and approximate algorithms for answering these queries. All exact

1NP-, PP-, and NPPP-complete are classifications for the complexity of common problems in computer
science. These classifications usually describe the amount of computer time (elementary operations per-
formed) and space an algorithm takes to run (OZTOK; CHOI; DARWICHE, 2016; PAPADIMITRIOU,
1994).
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inference algorithms have an exponential complexity regarding the BN treewidth. Ap-
proximate inference algorithms usually are not sensitive to the BN treewidth and can be
pretty efficient regardless of the BN topology. However, the approximate methods usually
present issues regarding the quality of answers they compute, which is commonly related
to the amount of time scheduled by the algorithm (DARWICHE, 2008). The most suitable
inference algorithm will depend on the accuracy required and the computational cost.

Variable elimination is the simplest algorithm for exact inference in PGMs, and is
very efficient on models whose DAG representation is a tree. Belief propagation is an-
other algorithm to satisfy CPQs with exact inference when the DAG is a tree (RUSSELL;
NORVIG, 2020; PEYRARD et al., 2019).

2.7. Markov Models

It may be necessary to model dynamic systems that allow reasoning about the
state of the world as it evolves. These systems states are also represented as a set of
aleatory variables, whose values at time t are a snapshot of the relevant system attributes.
It is possible to model BNs representing a temporal probability model, known as Dy-
namic Bayesian Networks (DBNs). DBNs model stochastic processes over time intervals
(RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009).

DBMs are not the first temporal method of reasoning under uncertainty. Hidden
Markov Models have great popularity due to their compact representation, fast learn-
ing, and fast inference techniques (RUSSELL; NORVIG, 2020). According to Koller e
Friedman (2009), the Hidden Markov Models are the simplest nontrivial type of these
state-observation temporal models.

In probability theory, a Markov Model is a Stochastic Process (SP) which consists
of a family of variables that evolve regarding some parameter, usually time. An SP is
represented by {Xt | t ∈ T}, where:

• T is the parametric space, formed by a set of ordered values (e.g., time);
• t is a given value in T ; and
• Each Xt is an aleatory variable. The set of its possible values is called the states

space, and its specific values at any given time are the process states.

In general, SPs are used to study the evolution of phenomena or systems. Given
an initial condition, all system evolution is unknown, having several possible trajectories
for its evolution. The SPs analysis determines the probability distributions for each set
of aleatory variables, using them to predict future behaviors (states) given past behaviors
(states). In contrast with deterministic models, those specified by a set of equations that
describe exactly how a system evolves, the evolution of stochastic models is random, and
if the process runs several times (realizations of the process), it will not give the same
results (JELINEK, 1997; RABINER, 1989).

Let {X0, X1, ... Xt, ..., XT} be a sequence of stochastic variables, where (0 ≤
t ≤ T ) represents a discrete time order, defined for the same discrete and finite state
space. If nothing else is considered, the joint probability of these stochastic variables is
given by the chain rule (JELINEK, 1997), as shown in Equation 16.
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P (X0, X1, ..., XT ) =

T∏
t=0

P (Xt|X0, X1, ..., Xt−1)

= P (X0)P (X1|X0)P (X2|X0, X1) ...

P (XT |X0, X1, X2, ..., XT−1)

(16)

An SP is taken as Markovian if it satisfies the property shown in Equation 17.

P (Xt|X0, X1, X2, ..., Xt−1) = P (Xt|Xt−1) (17)

When dealing with a markovian process, the Equation 16 can be simplified, as
shown in Equation 18.

P (X0, X1, ..., XT ) =

T∏
t=0

P (Xt|Xt−1)

= P (X0)P (X1|X0)P (X2|X1)P (X3|X2) ...

P (XT |XT−1)

(18)

2.8. Markov Chains
Markovian processes in discrete state spaces are known as Markov Chains (MCs).

An MC is a memoryless SP whose future state depends only on its current state, disre-
garding past states. Satisfying what is known as Markov property, a MC Xt is a SP
where given a value of Xt, the values of Xs (t < s) are not influenced by the values of
Xu (u < t). Or, more succinctly, successive steps are statistically independent (REICHL,
2016).

Grinstead e Snell (1998) made an interesting description of MCs by defining it as
a set of states S = {s1, s2, ..., sr} in a process. The process starts in one of these states
and moves successively from one state to another. Each move is called a step. If the chain
is in a current state si, then it moves to a state sj at the next step with a probability denoted
by pij , and this probability does not depend upon which states the chain was before the
current state si. The probabilities pij are called transition probabilities. The process can
remain in the state it is in, and this occurs with probability pii. An initial probability
distribution, defined on S, specifies the starting state and is calculated as a vector π that
indicates the initial probability of each state.

This probability distribution of the states transitions is typically represented in
a transition matrix. If a MC has N possible states, its transition matrix will be an
NxN matrix, where each entry Nij is the transition probability from state i to state j.
The transition matrix must be stochastic, which is a matrix where entries in each row
must add up to exactly one (

∑n
j=1 Pij = 1) since each row represents its probability

distribution. The transition matrix probabilities can vary over time or be stationary (when
its probabilities are time-independent). The π vector and the hidden states (BuM, StM,
BeM) in Figure 7 illustrate an MC.

Through the transition matrix it is possible to obtain the absolute probability of the
system states after a given number of transitions. The probability of a system composed
by: 1) N states (1, 2 ... N); 2) a transition matrix ANxN ; and 3) an initial state vector π0,
stay in one of its N states after k transitions is seen in equation 19.

πk = π0(ANxN )k (19)
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Where:

• Each Ak
ixj position is the probability of staying in state j, since it started in state i,

after k transitions; and
• πk has the probabilities of staying in each state after k transitions when considering

the initial state vector π0.

2.8.1. Hidden Markov Models

Most Markovian processes consist of states that can be directly observed. How-
ever, HMMs are used to model Markovian processes that generate indirectly observable
states through the transitions between the states of the MC that govern the process, but
which can not be directly observed. HMMs are double-layered SPs with a nonvisible
SP that can be observed through another SP that produces the sequence of observations
(RABINER, 1989).

The hidden process is a set of states connected by transitions with probabilities
(an MC). In contrast, the observable process is a set of outputs or visible states emitted
by each not observable state according to some output of a probability density function.
The challenge is to determine the hidden states from the visible states (RABINER, 1989).

The fundamental difference between HMMs and the rest of the Markovian pro-
cesses is how the system is observed. HMMs have an indirect observation of the states,
carried out by inference since the observable ones are probabilistic functions regarding
the states of the chain or regarding the transition between these states. In contrast, the
rest of the markovian processes has direct observation, where the observable ones are the
states themselves.

Most Neural Networks are probabilistic methods. They work in a discriminative
approach to take inputs from a high-dimensional space and map it to a lower-dimensional
space. On the other hand, HMMs are statistical methods that work in a generative ap-
proach that models conditional dependencies of hidden states. Each state has a probability
distribution regarding the observations. An HMM hidden state is the entity’s identity that
caused each observation, and this hidden cause is translated statistically into the observed
data. Through the forward-backward algorithms, it is possible to find the conditional
distribution over the hidden states (CAPPÉ; MOULINES; RYDÉN, 2006; RABINER,
1989).

Described for the first time in the late 1960s and early 1970s (BAUM; PETRIE,
1966; BAUM; EAGON, 1967), HMM applications began to be used in word recogni-
tion in the middle 1970s (BAKER, 1975). HMMs appear in the literature under various
names, such as Hidden Markov Processes, Markov Sources, Hidden Markov Chains, and
Probabilistic Functions of Markov Chains. HMM’s first applications focused on speech
and handwriting recognition and DNA sequencing, reaching, later, great importance in
bioinformatics.

2.8.2. Hidden Markov Models Structure

An HMM structure is characterized by:
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• T : the observation sequence length;
• N : the number of distinct states in the model;
• S: a set of states. Individual states are labeled {1, 2, ..., N} and the state at time t

as Qt;
• M : the number of distinct observable symbols in the model.
• V : a set of symbols. Individual symbols are denoted as {v1, v2, ..., vM};
• A = {aij}: the transition probability distribution from state a, where: aij =
P [qt+1 = j|qt = i], 1 ≤ i, j ≤ N (aij can be read as P (state qj at t +
1|state qi at t));

• B: a NxM probability distribution matrix which relates the states of the set S
(rows) to the observable symbols of the set V (columns). B = {bj(k)} defines
the observation probability distribution of symbols in the state j, {j1, j2, ..., jN},
where: bj(k) = P [Ot = vk|qt = j], 1 ≤ k ≤ M . As A, B is
stochastic and its probabilities bj(k) are time independent ((bj(k) can be read as
P (observation k at t|state qj at t));

• π = {πi}: the initial state distribution, where: πi = P [q1 = i], 1 ≤ i ≤ N .

Thus, the HMM specification requires the definition of two model parameters (N
and M ), a symbol observation specification, and the definition of three sets of proba-
bility distribution A, B, and π. The complete set of model parameters is defined as
λ = (A,B, π). This set of parameters defines the measure of probability for O, P (O|λ),
where O is a set of observed states.

A different graphical notation depicts the HMMs structure. Directed (generally
cyclic) graphs represent the HMMs transition/emission model, in which vertices denote
the different states and edges indicate the transitions/emissions between states (KOLLER;
FRIEDMAN, 2009).

Figure 7 presents the structure of an HMM that represents part of the stock ex-
change domain. The three hidden variables that form the hidden MC represent the stock
market states, Bull Market (BuM), Bear Market (BeM), and Stagnant Market (StM). The
edges between these hidden states represent the possible transitions. The values next to
each edge indicate the transition probabilities between the hidden states. The two observ-
able symbols represent two critical economic indicators: a high interest rate (HIR) and
a growing gross domestic product (GGDP). The dashed edges arriving at the observable
states represent the possible emissions. The values next to each dashed edge indicate
the emission probabilities from hidden to observable states. This HMM would make it
possible to predict the stock market direction by observing the economic indicators.

The parameters of the HMM displayed in Figure 7 are listed below:

• N = 3;
• S = {BuM, StM, BeM};
• M = 2;
• V = {HIR, GGDP};
• A =

BuM StM BeM[ ]0.2 0.2 0.6 BuM
0.5 0.2 0.3 StM
0.1 0.3 0.6 BeM
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Figure 7. An HMM example over five states (three hidden/non-observable states
and two observable states).

• B =
HIR GGDP[ ]0.3 0.7 BuM
0.6 0.4 StM
0.8 0.2 BeM

• π =
BuM StM BeM[ ]
0.2 0.6 0.2

There are three main problems we can solve using HMMs:

1. Evaluation problem: given an observation sequence O, and a model λ, how to
calculate the probability of O be produced by the model (P (O|λ));

2. Best sequence of states: given an observation sequence O, and a model λ, how
to calculate an optimal state sequence Q for a given sequence of observations;

3. Training: how to adjust the model parameters λ = (A,B, π) to maximize
P (O|λ).

These three problems are traditionally solved, respectively, by Forward-
backward, Viterbi and Baum-Welch or K-Means algorithms (CAPPÉ; MOULINES;
RYDÉN, 2006; RABINER, 1989).

3. AI Applications in Medical Researches
Several AI techniques have been applied in medical research. Machine Learning

architectures are being applied in different biomedical areas, such as public and medical

23



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

health management, bio and medical imaging, developmental evaluations and interven-
tions, and brain and body machine interface (PAIVA et al., 2022b, 2022a; QUEIROZ et
al., 2020; PHELLAN et al., 2019; ZEMOURI; ZERHOUNI; RACOCEANU, 2019; LIT-
JENS et al., 2017; LEE et al., 2017; SANTANA et al., 2016). Current and potential uses
of AI in healthcare also include dermatology, ophthalmology, radiology, histopathology,
and nuclear medicine (LEE et al., 2019).

Some researches involving the use of intelligent systems applied to autism pro-
pose the formulation of diagnostic methods based on magnetic resonance imaging (RO-
DRIGUES et al., 2022; SANTANA et al., 2022; HEINSFELD et al., 2018; BHAUMIK et
al., 2018; KHOSLA et al., 2018; LIAO; LU, 2018; ZHAO et al., 2018; DVORNEK; VEN-
TOLA; DUNCAN, 2018; DEKHIL et al., 2018b, 2018a; HAZLETT et al., 2017; EMER-
SON et al., 2017; DVORNEK et al., 2017; YAHATA et al., 2016), however, most of them
do not use any protocol for report results, such as the GSRS protocol (RODRIGUES et
al., 2023), implicating in sat-backs for result comparisons.

Moreover, some research focuses on early prediction approaches from behavioral
and developmental measures (BUSSU et al., 2018), the use of robots and other AI tech-
niques applied to the therapy processes of ASD children (ALVES et al., 2020), wear-
able assistive technologies (BENSSASSI et al., 2018), approaches to predicting autism
risk genes (BRUEGGEMAN; KOOMAR; MICHAELSON, 2020; LIN et al., 2018; LE;
VAN, 2017), methods to reveal differences in regional brain structure between autistic
and typical development people (GÓRRIZ et al., 2019), and modeling the diagnostic het-
erogeneity of autism (LOMBARDO; LAI; BARON-COHEN, 2019).

4. PGMs Applications in Medical Researches
HMMs have been used for modeling several different problems in medical re-

searches, including finds genes in E.coli DNA (KROGH; MIAN; HAUSSLER, 1994),
a model comparative ab initio prediction of gene structures (MEYER; DURBIN, 2002),
and gene prediction in fungal genomes using RNA-seq transcripts (TESTA et al., 2015).

Threre are approaches also using HMMs to diagnose cancer (MANOGARAN
et al., 2018), for genotype imputation (BROWNING; BROWNING, 2009; LI et al.,
2010; MARCHINI et al., 2007; HOWIE; DONNELLY; MARCHINI, 2009; MARCHINI;
HOWIE, 2010), and to investigate heart abnormalities (FAHAD et al., 2018; DWIVEDI;
IMTIAZ; RODRIGUEZ-VILLEGAS, 2018; SARAÇOĞLU, 2012; CHAUHAN et al.,
2008; WANG et al., 2007; UĞUZ; ARSLAN; TÜRKOĞLU, 2007).

Regarding mental disorders and diagnosis, HMMs have been applied to evalu-
ate the pronunciation quality and acquisition of language skills (SCHIPOR; PENTIUC;
SCHIPOR, 2012; SAZ et al., 2009), to forecast a possible future diagnosis from infants
with a high risk of autism (ALIE et al., 2011), to diagnose emotion-related mental dis-
eases (GUO et al., 2017), and to recognize the stereotyped gestures which are typical of
autistic people (CAMADA; CERQUEIRA; LIMA, 2017).

Carvalho et al. (2020) used HMMs, together with the data on autism heritabil-
ity, to develop a model to investigate the likelihood of autistic parents generating autistic
children. The model was built and validated using statistical data from the association of
gender with the recurrence of autism among siblings and statistical data from the associ-
ation of genetic factors with autism.
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Applied in several areas, BNs are among the AI methods that have been
most successful in practical applications for medicine. The most common approaches
are for medical diagnoses, such as diagnosing diseases of the lymph node (HECK-
ERMAN; HORVITZ; NATHWANI, 1992), heart disease diagnosis (SPIEGELHAL-
TER; FRANKLIN; BULL, 2013; SAHEKI, 2005), and computerized tongue diagnosis
(ZHANG; ZHANG; ZHANG, 2017).

Regarding mental disorders, Palmer, Lawson e Hohwy (2017) gathered Bayesian
approaches to autism within a framework that extends from simple to complex Bayesian
inference models. Given that the ASD core features relate to how individuals interact with
the world around them, they propose that ASD is characterized by a greater weighting of
sensory information in updating probabilistic representations of the environment. Thus,
ASD may relate to finer mechanisms involved in the adjustment of sensory perception,
and the hypotheses regarding atypical sensory weighting in ASD have direct implications
for behavior regulation. They base their work on a theory called predictive processing, in
which top-down and bottom-up messages passing across the cerebral cortex implement
hierarchical probabilistic inference on the sensory stimulation causes. The hypothesis
regarding ASD is that the incoming sensory signals are weighted more highly when inte-
grated with the brain’s existing model of the environment, such that neural processes like
perception are dictated to a greater extent by the present sensory data rather than prior or
contextual information.

Carvalho (2022) proposed BN models capable of estimating the risk of autism
among the family members given some evidence. Structured like a family tree, the BNs
are capable of, given some evidence, for example, the autism diagnosis of one family
member, estimate the risk of ASD among other family members.

Other BN human applications include automated language (CHARNIAK; GOLD-
MAN, 1990) and text understanding (GOLDMAN, 1991), describing the interaction be-
tween genes (FRIEDMAN et al., 2000), control of Computer Vision systems (LEVITT;
AGOSTA; BINFORD, 1990), pathology finder (HECKERMAN, 1990), genetic models
(SILBERSTEIN et al., 2013), and clinical support (POURRET; NAÏM; MARCOT, 2008).

5. Discussions and Conclusions

This paper presented an overview of the AI sub-fields, with emphasis on the
PGMs. We further explored these approaches because they are widely used for inference
in environments of uncertainty. Moreover, an overview concerning probability theory also
was necessary due to its importance to the probabilistic models. We dedicated special at-
tention to understanding the models’ fundamentals, how they work, and what they can
do.

We started showing the vast dimension of the AI field by succinctly defining it and
describing its main sub-fields. Then, we presented the probabilistic networks, which allow
inter-causal reasoning to build inference models. We also introduced both the probability
theory basics and the graphs fundamentals since these techniques underlie the develop-
ment of the graphical models and the inference process.

Both Bayesian and Markovian approaches seem the most suitable methods to
model the complex nature of systems with a cause-and-effect association, which is very
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common in health, especially related to disease prediction and diagnosis. Thus, BNs
and HMMs were sufficiently explored once these two types of methodologies can infer
unknown states given a piece of evidence.

Those uses of PGMs could also be extrapolated to many applications related to
bio-medicine, once many of them are mainly composed by statistical characteristics, such
as genetic heritability, set of body measurements to reach diagnoses, and protein bind
sites for drug effects on disease control.

For cases where it is possible to selecting variable by the identification process
described in this work, and a sample representation can be used to extract statistical data
is available, the PGMs are highly recommended, given the simplicity of implementation
and previous efficiency on literature for similar problems.

However, as probabilistic models, the quality of Bayesian and Markov models
fundamentally depends on an accurately defined set of probabilities to support the models’
construction. Such data may not always be available or correct. Therefore, estimates from
probabilistic systems must always be taken as directive information once nondeterministic
models provide them.

References

ALIE, D. et al. Analysis of eye gaze pattern of infants at risk of autism spectrum disor-
der using markov models. In: IEEE. 2011 IEEE Workshop on Applications of Computer
Vision (WACV). [S.l.], 2011. p. 282–287.

ALVES, F. J. et al. Applied behavior analysis for the treatment of autism: A systematic
review of assistive technologies. IEEE Access, IEEE, v. 8, p. 118664–118672, 2020.

BAKER, J. K. Stochastic modeling as a means of automatic speech recognition. [S.l.],
1975.

BAUM, L. E.; EAGON, J. A. An inequality with applications to statistical estimation for
probabilistic functions of markov processes and to a model for ecology. Bulletin of the
American Mathematical Society, v. 73, n. 3, p. 360–363, 1967.

BAUM, L. E.; PETRIE, T. Statistical inference for probabilistic functions of finite state
markov chains. The annals of mathematical statistics, JSTOR, v. 37, n. 6, p. 1554–1563,
1966.

BENSSASSI, E. M. et al. Wearable assistive technologies for autism: opportunities and
challenges. IEEE Pervasive Computing, IEEE, v. 17, n. 2, p. 11–21, 2018.

BERG, J. et al. Action recognition in assembly for human-robot-cooperation using hidden
markov models. Procedia CIRP, Elsevier, v. 76, p. 205–210, 2018.

BHAUMIK, R. et al. Predicting autism spectrum disorder using domain-adaptive cross-
site evaluation. Neuroinformatics, Springer, v. 16, n. 2, p. 197–205, 2018.

BROWNING, B. L.; BROWNING, S. R. A unified approach to genotype imputation and
haplotype-phase inference for large data sets of trios and unrelated individuals. The Amer-
ican Journal of Human Genetics, Elsevier, v. 84, n. 2, p. 210–223, 2009.

26



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

BRUEGGEMAN, L.; KOOMAR, T.; MICHAELSON, J. J. Forecasting risk gene discov-
ery in autism with machine learning and genome-scale data. Scientific reports, Nature
Publishing Group, v. 10, n. 1, p. 1–11, 2020.

BUSSU, G. et al. Prediction of autism at 3 years from behavioural and developmental
measures in high-risk infants: A longitudinal cross-domain classifier analysis. Journal of
autism and developmental disorders, Springer, p. 1–16, 2018.

CAMADA, M. Y.; CERQUEIRA, J. J.; LIMA, A. M. N. Stereotyped gesture recognition:
An analysis between hmm and svm. In: IEEE. 2017 IEEE International Conference on
INnovations in Intelligent SysTems and Applications (INISTA). [S.l.], 2017. p. 328–333.

CAPPÉ, O.; MOULINES, E.; RYDÉN, T. Inference in hidden Markov models. New York,
NY: Springer Science & Business Media, 2006.

CARVALHO, E. A. Estimating the family bias to autism: a bayesian approach. Tese
(PhD Dissertation) — Federal University of Itajubá, Itajubá, MG. Brazil, 2022.

CARVALHO, E. A. et al. Hidden markov models to estimate the probability of having
autistic children. IEEE Access, IEEE, v. 8, p. 99540–99551, 2020.

CHARNIAK, E. Bayesian networks without tears. AI magazine, v. 12, n. 4, p. 50–50,
1991.

CHARNIAK, E.; GOLDMAN, R. Plan recognition in stories and in life. In: Machine
Intelligence and Pattern Recognition. [S.l.]: Elsevier, 1990. v. 10, p. 343–351.

CHAUHAN, S. et al. A computer-aided mfcc-based hmm system for automatic ausculta-
tion. Computers in biology and medicine, Elsevier, v. 38, n. 2, p. 221–233, 2008.

DARWICHE, A. Bayesian networks. In: Handbook of knowledge representation. 1. ed.
United Kingdom: Elsevier, 2008. p. 467–499.

DEKHIL, O. et al. Identifying personalized autism related impairments using resting
functional mri and ados reports. In: SPRINGER. International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham, Switzerland, 2018. p. 240–
248.

DEKHIL, O. et al. Using resting state functional mri to build a personalized autism diag-
nosis system. In: IEEE. Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International
Symposium on. [S.l.], 2018. p. 1381–1385.

DVORNEK, N. C.; VENTOLA, P.; DUNCAN, J. S. Combining phenotypic and resting-
state fmri data for autism classification with recurrent neural networks. In: IEEE. Biomed-
ical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on. [S.l.], 2018. p.
725–728.

DVORNEK, N. C. et al. Identifying autism from resting-state fmri using long short-term
memory networks. In: SPRINGER. International Workshop on Machine Learning in
Medical Imaging. Cham, Switzerland, 2017. p. 362–370.

DWIVEDI, A. K.; IMTIAZ, S. A.; RODRIGUEZ-VILLEGAS, E. Algorithms for auto-
matic analysis and classification of heart sounds: a systematic review. IEEE Access, IEEE,
v. 7, p. 8316–8345, 2018.

27



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

EMERSON, R. W. et al. Functional neuroimaging of high-risk 6-month-old infants pre-
dicts a diagnosis of autism at 24 months of age. Science translational medicine, American
Association for the Advancement of Science, v. 9, n. 393, p. eaag2882, 2017.

FAHAD, H. et al. Microscopic abnormality classification of cardiac murmurs using anfis
and hmm. Microscopy research and technique, Wiley Online Library, v. 81, n. 5, p. 449–
457, 2018.

FEENBERG, A. What is philosophy of technology? In: Defining technological literacy.
[S.l.]: Springer, 2006. p. 5–16.

FRIEDMAN, N. et al. Using bayesian networks to analyze expression data. Journal of
computational biology, Mary Ann Liebert, Inc., v. 7, n. 3-4, p. 601–620, 2000.

GENESERETH, M. R.; NILSSON, N. J. Logical foundations of artificial intelligence.
[S.l.]: Morgan Kaufmann, 2012.

GEORGE, E. I. The variable selection problem. Journal of the American Statistical As-
sociation, Taylor & Francis Group, v. 95, n. 452, p. 1304–1308, 2000.

GHAHRAMANI, Z. An introduction to hidden markov models and bayesian networks.
In: Hidden Markov models: applications in computer vision. Singapore: World Scientific
Publishing, 2001. p. 9–41.

GOLDMAN, R. A Probabilistic Approach to Language Understanding," Department of
Computer Science. [S.l.], 1991.

GÓRRIZ, J. M. et al. A machine learning approach to reveal the neurophenotypes
of autisms. International journal of neural systems, World Scientific, v. 29, n. 07, p.
1850058, 2019.

GRINSTEAD, C. M.; SNELL, J. L. Introduction to probability. 2. ed. Rhode Island, USA:
American Mathematical Society, 1998.

GUO, K. et al. Eeg-based emotion classification using innovative features and combined
svm and hmm classifier. In: IEEE. 2017 39th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). [S.l.], 2017. p. 489–492.

HAZLETT, H. C. et al. Early brain development in infants at high risk for autism spectrum
disorder. Nature, Nature Publishing Group, v. 542, n. 7641, p. 348, 2017.

HECKERMAN, D. Probabilistic similarity networks. Networks, Wiley Online Library,
v. 20, n. 5, p. 607–636, 1990.

HECKERMAN, D. A tutorial on learning with bayesian networks. Innovations in
Bayesian networks, Springer, p. 33–82, 2008.

HECKERMAN, D.; GEIGER, D.; CHICKERING, D. M. Learning bayesian networks:
The combination of knowledge and statistical data. Machine learning, Springer, v. 20,
n. 3, p. 197–243, 1995.

HECKERMAN, D.; HORVITZ, E.; NATHWANI, B. Toward Normative Expert Systems:
Part I, the Pathfinder Project. Knowledge Systems Laboratory, Medical Computer Sci-
ence. [S.l.]: Stanford University, 1992.

HEINSFELD, A. S. et al. Identification of autism spectrum disorder using deep learning
and the abide dataset. NeuroImage: Clinical, Elsevier, v. 17, p. 16–23, 2018.

28



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

HOLMES, D. E.; JAIN, L. C. Introduction to bayesian networks. In: Innovations in
Bayesian Networks. [S.l.]: Springer, 2008. p. 1–5.

HOWIE, B. N.; DONNELLY, P.; MARCHINI, J. A flexible and accurate genotype impu-
tation method for the next generation of genome-wide association studies. PLoS genetics,
Public Library of Science, v. 5, n. 6, p. e1000529, 2009.

JELINEK, F. Statistical methods for speech recognition. [S.l.]: MIT press, 1997.

KHOSLA, M. et al. 3d convolutional neural networks for classification of functional con-
nectomes. arXiv preprint arXiv:1806.04209, 2018.

KJAERULFF, U. B.; MADSEN, A. L. Bayesian Networks and Influence Diagrams: A
Guide to Construction and Analysis. 2. ed. New York NY: Springer, 2013.

KLIR, G. J. Uncertainty and information: foundations of generalized information theory.
Kybernetes, Emerald Group Publishing Limited, 2006.

KOLLER, D.; FRIEDMAN, N. Probabilistic graphical models: principles and tech-
niques. Cambridge, MA: The MIT press, 2009.

KROGH, A.; MIAN, I. S.; HAUSSLER, D. A hidden markov model that finds genes in
e.coli dna. Nucleic Acids Research, Oxford University Press, v. 22, n. 22, p. 4768–4778,
1994.

LE, D.-H.; VAN, N. T. Meta-analysis of whole-transcriptome data for prediction of novel
genes associated with autism spectrum disorder. In: Proceedings of the 8th International
Conference on Computational Systems-Biology and Bioinformatics. [S.l.: s.n.], 2017. p.
56–61.

LEE, J.-G. et al. Deep learning in medical imaging: general overview. Korean journal of
radiology, v. 18, n. 4, p. 570–584, 2017.

LEE, L. I. et al. The current state of artificial intelligence in medical imaging and nuclear
medicine. BJR Open, The British Institute of Radiology., v. 1, p. 20190037, 2019.

LEVITT, T. S.; AGOSTA, J. M.; BINFORD, T. O. Model-based influence diagrams for
machine vision. In: Machine Intelligence and Pattern Recognition. [S.l.]: Elsevier, 1990.
v. 10, p. 371–388.

LI, Y. et al. Mach: using sequence and genotype data to estimate haplotypes and unob-
served genotypes. Genetic epidemiology, Wiley Online Library, v. 34, n. 8, p. 816–834,
2010.

LIAO, D.; LU, H. Classify autism and control based on deep learning and community
structure on resting-state fmri. In: IEEE. Advanced Computational Intelligence (ICACI),
2018 Tenth International Conference on. [S.l.], 2018. p. 289–294.

LIN, Y. et al. A machine learning approach to predicting autism risk genes: Validation of
known genes and discovery of new candidates. bioRxiv, Cold Spring Harbor Laboratory,
p. 463547, 2018.

LITJENS, G. et al. A survey on deep learning in medical image analysis. Medical image
analysis, Elsevier, v. 42, p. 60–88, 2017.

29



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

LOMBARDO, M. V.; LAI, M.-C.; BARON-COHEN, S. Big data approaches to decom-
posing heterogeneity across the autism spectrum. Molecular psychiatry, Nature Publish-
ing Group, v. 24, n. 10, p. 1435–1450, 2019.

MANOGARAN, G. et al. Machine learning based big data processing framework for
cancer diagnosis using hidden markov model and gm clustering. Wireless personal com-
munications, Springer, v. 102, n. 3, p. 2099–2116, 2018.

MARCHINI, J.; HOWIE, B. Genotype imputation for genome-wide association studies.
Nature Reviews Genetics, Nature Publishing Group, v. 11, n. 7, p. 499, 2010.

MARCHINI, J. et al. A new multipoint method for genome-wide association studies by
imputation of genotypes. Nature genetics, Nature Publishing Group, v. 39, n. 7, p. 906,
2007.

MEYER, I. M.; DURBIN, R. Comparative ab initio prediction of gene structures using
pair hmms. Bioinformatics, Oxford University Press, v. 18, n. 10, p. 1309–1318, 2002.

MRAD, A. B. et al. An explication of uncertain evidence in bayesian networks: likelihood
evidence and probabilistic evidence. Applied Intelligence, SPRINGER VAN GODEWI-
JCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS, v. 43, n. 4, p. 802–824,
2015.

MUSTAFA, M. K.; ALLEN, T.; APPIAH, K. A comparative review of dynamic neural
networks and hidden markov model methods for mobile on-device speech recognition.
Neural Computing and Applications, Springer, v. 31, n. 2, p. 891–899, 2019.

NEIL, M.; FENTON, N.; NIELSON, L. Building large-scale bayesian networks. The
Knowledge Engineering Review, Cambridge University Press, v. 15, n. 3, p. 257–284,
2000.

NIELSEN, T. D.; JENSEN, F. V. Bayesian networks and decision graphs. 2. ed. New
York, NY: Springer Science & Business Media, 2009.

OZTOK, U.; CHOI, A.; DARWICHE, A. Solving pppp-complete problems using knowl-
edge compilation. In: Proceedings of the Fifteenth International Conference on Principles
of Knowledge Representation and Reasoning. [S.l.: s.n.], 2016. p. 94–103.

PAIVA, V. A. et al. Gass-metal: identifying metal-binding sites on protein structures using
genetic algorithms. Briefings in Bioinformatics, Oxford University Press, v. 23, n. 5, p.
bbac178, 2022.

PAIVA, V. de A. et al. Protein structural bioinformatics: An overview. Computers in Bi-
ology and Medicine, Elsevier, v. 147, p. 105695, 2022.

PALMER, C. J.; LAWSON, R. P.; HOHWY, J. Bayesian approaches to autism: Towards
volatility, action, and behavior. Psychological bulletin, American Psychological Associa-
tion, v. 143, n. 5, p. 521, 2017.

PAPADIMITRIOU, C. H. Computational Complexity. [S.l.]: Addison-Wesley, 1994.

PEARL, J. Fusion, propagation, and structuring in belief networks. Artificial intelligence,
Elsevier, v. 29, n. 3, p. 241–288, 1986.

PEARL, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. 1. ed. San Francisco CA: Morgan Kaufmann, 1988.

30



R
ev

is
ta

E
ix

os
Te

ch
|I

SS
N

23
59

-1
26

9
|v

.1
1
|n

.1
|2

02
4

PEARL, J. Causality: Models, Reasoning, and Inference. 2. ed. New York, NY: Cam-
bridge University Press, 2009.

PEYRARD, N. et al. Exact or approximate inference in graphical models: why the choice
is dictated by the treewidth, and how variable elimination can be exploited. Australian &
New Zealand Journal of Statistics, Wiley Online Library, v. 61, n. 2, p. 89–133, 2019.

PHELLAN, R. et al. Automatic detection of age-and sex-related differences in human
brain morphology. In: Proceedings of International Society for Magnetic Resonance in
Medicine (ISMRM) 27th ANNUAL MEETING & EXHIBITION. [S.l.: s.n.], 2019.

POURRET, O.; NAÏM, P.; MARCOT, B. Bayesian networks: a practical guide to appli-
cations. [S.l.]: John Wiley & Sons, 2008.

QUEIROZ, F. C. et al. ppigremlin: a graph mining based detection of conserved structural
arrangements in protein-protein interfaces. BMC bioinformatics, Springer, v. 21, p. 1–25,
2020.

RABINER, L. R. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, Ieee, v. 77, n. 2, p. 257–286, 1989.

RAHUL, M. et al. An efficient technique for facial expression recognition using multi-
stage hidden markov model. In: Soft Computing: Theories and Applications. Singapore:
Springer, 2019. p. 33–43.

REICHL, L. E. A modern course in statistical physics. [S.l.]: John Wiley & Sons, 2016.

RODRIGUES, I. D. et al. Machine learning and rs-fmri to identify potential brain re-
gions associated with autism severity. Algorithms, v. 15, n. 6, 2022. ISSN 1999-4893.
http://dx.doi.org/10.3390/a1506019510.3390/a15060195.

RODRIGUES, I. D. et al. Grsr-a guideline for reporting studies results for machine learn-
ing applied to electroencephalogram data. Revista Brasileira de Computação Aplicada,
v. 15, n. 2, p. 22–35, 2023.

ROSEN, K. H. Handbook of discrete and combinatorial mathematics. 2. ed. Boca Raton,
FL: CRC press, 2017.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach. [S.l.]: Pearson
Education, 2020. v. 4.

SAHEKI, A. H. Construção de uma rede Bayesiana aplicada ao diagnóstico de doenças
cardíacas. Tese (Doutorado) — Universidade de São Paulo, 2005.

SANTANA, C. A. et al. Gremlin: A graph mining strategy to infer protein-ligand interac-
tion patterns. In: IEEE. 2016 IEEE 16th International Conference on Bioinformatics and
Bioengineering (BIBE). [S.l.], 2016. p. 28–35.

SANTANA, C. P. et al. rs-fmri and machine learning for asd diagnosis: a sys-
tematic review and meta-analysis. Scientific Reports, Nature, v. 12, n. 6030, 2022.
http://dx.doi.org/10.1038/s41598-022-09821-610.1038/s41598-022-09821-6.
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